

Moving Test – MT680s/MT686s

Single-phase Test System with integrated Current Source

MT680s - Accuracy Class 0.1 MT686s - Accuracy Class 0.05

General	The state of the art test system MT680s consists of a class 0.1 reference meter (MT686s class 0.05) with built- in current source (up to 120 A). The system is particularly designed for analysis of complete metering installations and local mains conditions. The equipment offers high functionality combined with an excellent menu guided operation via coloured 6.5" touch screen or externally via interface.	
Features	 Accuracy class 0.1 (MT680s) Accuracy class 0.05 (MT686s) Direct measurement up to 120 A and 500 V Calibration under real load conditions Verification of the energy registration 4 quadrant measurement Harmonic spectrum analysis Wave form analysis 	Alphanumeric keypad
Functions	 Testing meter installations in two-wire systems Power and energy measurements for active, reactive and apparent power Measuring frequency, phase shift and power factor Harmonic spectrum analysis for voltage and current up to the 40th order Measuring the distortion factor Vector representation of the measuring values Oscilloscope function for curve scanning Energy dosing with built-in current source 	6.5" Touch screen
Data Management	For later download on a PC, the operator can store all test results and measuring values on especially configured USB stick. The data management software MTVis provides the ability to transfer the data between MT68xs and an external PC. All test results can be summarized and printed in a test report.	MT68xs suitcase Single-phase meter Stackable Sub-D plug
Temperature Sensor MT3450 (optional)	The temperature sensor MT3450 can be used with the devices of the MT-series. It serves for temperature registration on-site. The temperature will be indicated on the MT-display and will be recorded every time data are stored.	

Temperature sensor

Actual Values Measurement

All instantaneous values are displayed simultaneously in a summary:

- RMS values of voltage and current
- Phase angle between voltage and current
- Active, reactive and apparent power
- Test frequency
- Power factor (cos φ)

Parant Ion.		Intting				
310	ghe tislos					
atem [3.0000					
Har.	9.0111	14 C				
	0.00	-				
h.C.	-0.08	1		and the second s		141
- Inc -	1.70	-				
14	360.00					
	368.66	100				
	9.0000			7		
1.0	8,0000	(M)				
	8.0000	-				
1	8.0008	499				
	2.36	Ma				
				1102.000		
1100				Costimu	(Mingle)	

HT 680 s Aussessed

Vector Display The colored vector diagram display for voltage and current makes it very easy to detect wiring faults in voltage and current circuits.

All measured values can be stored on USB stick according to the customer information data.

Error Measurement By entering all relevant test parameters, like meter constant and the number of pulses, the system can perform the error measurement on electricity meters. The percentage error including all statistical values can be stored according to the customer information data. In order to inform the operator about the status of the measurement a bar graph indicates continuously the measured energy as well as the detected metrology pulses from the unit under test.

Automatic Operation

By using predefined test routines the MT68xs system can operate automatically without need of an external PC.

Harmonic Measurement

Due to the high sampling rate of the working standard the MT68xs is able to measure harmonics in voltage and current up to the 40th THD (conform to the voltage quality norm DIN EN 50160). The measured harmonic spectrum can be displayed in a chart or in a logarithmic diagram.

Technical Data

	1110003	1110003
General		
Power supply	85 265 V, 47 63 Hz	
Power consumption	max. 135 VA	
Temperature range, operation	-10° + 50° C	
Temperature range, storage	-15° + 65° C	
Relative humidity (not condensing)	max. 95 %	
Dimensions (DxWxH)	248 x 300 x 196,2 mm	
Weight	~ 8.4 kg	
Safety		
P class according to DIN EN 60529	IP30	
Declaration of conformity	CE conform	
Protection class according to DIN EN 61140	1	
Overvoltage category voltage measurement	CAT III 300 V / CAT II 600 V	
Overvoltage category current measurement	CAT III 300 V / CAT II 600 V	
Reference meter		
leasuring modes	2LW / 2LBE / 2LS	
undamental frequency	45 65 Hz	
Bandwidth	3000 Hz	
ampling	16 bit 504 samples/period	
accuracy class for measuring of power / energy	0.1	
ingle measurement accuracy 3) 4)	< 0.015°	
requency measurement deviation	± 0.01 Hz	
oltage Measurement		
/oltage measurement	5 mV 500 V	
/oltage range(s)	250 mV, 5 V, 60 V, 125 V, 250 V, 420 V	
/oltage measurement accuracy 5)	< 0.05 % @ 30 V 500 V	< 0.03 % @ 30 V 500 V
	< 1 % @ 50 mV < 30 V	< 1 % @ 50 mV < 30 V
	< 3 % @ 5 mV < 50 mV	< 3 % @ 5 mV < 50 mV
/oltage measurement temperature drift 3)	< 15 x 10 E-6 / K	< 10 x 10 E-6 / K
/oltage measurement stability 1) 3)	< 60 x 10 E-6	< 60 x 10 E-6
/oltage measurement long term stability 2) 3)	< 100 x 10 E-6 / Year	< 50 x 10 E-6 / Year
Current measurement		
Current measurement	1 mA 120 A	
Current range(s)	100 A, 50 A, 20 A, 10 A, 5 A, 2 A, 1 A,	
	500 mA, 200 mA, 100 mA, 50 mA, 20 mA	
Current measurement accuracy 5)	< 0.05 % @ 10 mA 120 A	< 0.025 % @ 10 mA 120 A
	< 0.2 % @ 5 mA < 10 mA	< 0.2 % @ 5 mA < 10 mA
Current measurement temperature drift 4)	< 20 x 10 E-6 / K	< 15 x 10 E-6 / K
Current measurement stability 1) 4)	< 70 x 10 E-6	< 70 x 10 E-6
Current measurement long term stability 2) 4)	< 100 x 10 E-6 / Year	< 80 x 10 E-6 / Year
Power Measurement		
Power/energy measurement accuracy 3) 6)	< 0.1 % @ 10 mA 120 A	< 0.05 % @ 10 mA 100 A
ower/energy measurement accuracy 5) 6)	< 0.25 % @ 5 mA < 10 mA	< 0.25 % @ 10 mA < 10 mA
	< 1 % @ 1 mA < 5 mA	< 1 % @ 1 mA < 5 mA
Power/energy measurement temperature drift 3) 4)	< 35 x 10 E-6 / K	< 25 x 10 E-6 / K
Power/energy measurement stability 1) 3) 4)	< 100 x 10 E-6	< 100 x 10 E-6
Power/energy measurement long term stability 2) 3) 4)	< 200 x 10 E-6 / Year	< 100 x 10 E-6 / Year
Source		
Current min. max.	1 mA 120 A	
Current range(s)	100 A, 50 A, 20 A, 10 A, 5 A, 2 A, 1 A,	
	500 mA, 200 mA, 100 mA, 50 mA, 20 mA	
Current max. voltage per range	600 mV (100 A 20 A)	
	5 V (10 Å)	
	8 V (5 A 20 mA)	
Current max. output power 8)	60 VA	
Current accuracy 4)	< 0.2 %	
current distortion	< 0.5 %	
current harmonic setting range 10) 14) 15)	2 40.	
Current harmonic amplitude 10) 14)	max. 40 % @ 2 10.	
	max. 30 % @ 11 20.	
	max. 20 % @ 21 30.	
	max. 10 % @ 31 40.	
Current bandwidth 10)	-3 dB @ ~1.5 kHz	
requency range	45 65 Hz	
Phase angle setting range	0.00 359.99°	
Phase angle stability 9)	< 0.15 °	
: Stability over 1 hour (every minute one measurement with ti = 60 s)	22.01.2018	
2: Stability over 1 year (every month one measurement over one hour)		
: From 30 V 500 V		

MT680s

MT686s

2: Stability over 1 year (every month one measurement over one hour)
 3: From 30 V... S00 V
 4: From 10 mA... 120 A
 5: Related to the read value at optimum range selection
 6: Related of apparent power
 7: Of range 30 %... 120 %
 8: Related of end of maximum range and end of range and ohmic load
 9: Stability over 1 hour (measurement with ti = 10 s)
 10: Depending on the selected option
 14: Every harmonic (related to fundamental)
 15: Total of harmonics max.40 %

Subjects to alteration.

ZERA GmbH Hauptstraße 392 53639 Königswinter Germany Phone: +49 (0) 2223 704-0 Fax: +49 (0) 22 23 704-70 Email: <u>zera@zera.de</u> Web: www.zera.de